Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.250
Filtrar
1.
J Transl Med ; 22(1): 351, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615020

RESUMO

BACKGROUND: Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS: To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS: Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-ß. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active ß-catenin in ovarian cancer cells. CONCLUSION: This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.


Assuntos
Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Proteína de Matriz Oligomérica de Cartilagem , Receptor Notch3 , Carcinogênese , Transdução de Sinais
2.
Medicine (Baltimore) ; 103(11): e37563, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489688

RESUMO

INTRODUCTION: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one kind of monogenic hereditary small-vessel disease in the brain caused by mutations in the NOTCH3 gene. However, it is rare for CADASIL to recur with different clinical manifestations in 1 patient, and some atypical clinical manifestations can easily lead to misdiagnosis by clinical physicians. CASE CONCERN: A 34-year-old male presented with transient speech disorder accompanied by weakness in the left side of the body for 1 day in June 2020. Magnetic resonance imaging showed acute ischemic infarction in right centrum semiovale, along with multiple abnormal white matter hyperintensities in the brain. Genetic sequencing identified a heterozygous mutation in the NOTCH3 gene. The patient experienced recurrent episodes in 2021 and 2023, with varying clinical symptoms including visual blurring, abnormal limb sensation, and sudden cognitive dysfunction. DIAGNOSIS: The diagnoses of CADASIL is based on clinical manifestations, imaging results, and genetic reports. INTERVISION AND OUTCOMES: The patient was received symptomatic treatment including antiplatelet aggregation therapy, lipid regulation, and plaque stabilization, resulting in improved symptoms. OUTCOMES: During the course of the disease, after medication treatment and rehabilitation exercise, the patient clinical symptoms have significantly improved. Currently, the patient is closely following up and regularly undergoing relevant examinations. LESSONS: In this rare case, we found that CADASIL can recur multiple times in a patient with different clinical symptoms, which can easily lead to clinical misdiagnosis. Clinicians should consider the possibility of CADASIL in young patients with sudden typical neurological dysfunction.


Assuntos
CADASIL , Leucoencefalopatias , Masculino , Humanos , Adulto , CADASIL/complicações , CADASIL/diagnóstico , CADASIL/genética , Receptor Notch3/genética , Encéfalo/patologia , Mutação , Imageamento por Ressonância Magnética , Leucoencefalopatias/complicações , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/patologia
3.
Eur Rev Med Pharmacol Sci ; 28(4): 1605-1609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436192

RESUMO

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominantly inherited cerebral small vessel disease caused by Neurogenic locus notch homolog protein 3 (NOTCH3) gene mutations. The main clinical features include migraine with aura, recurrent ischemic strokes and dementia. Brain MRI typically shows multiple small lacunar infarcts and severe, diffuse, symmetrical white matter hyperintensities (WMHs), with characteristic involvement of the anterior temporal pole, external capsule, and superior frontal gyrus. Reports of twins with CADASIL are scarce. Herein we describe a pair of monozygotic twins with peculiar CADASIL phenotype, carrying a new NOTCH3 variant. CASE PRESENTATION: Twin A was a 45-year-old male suffering from migraine, obesity, arterial hypertension, and polycythemia (with negative genetic analysis), who complained of a transient, short-lasting (~ 5 minutes) episode of speech difficulties. Brain MRI showed diffuse, symmetrical, confluent periventricular WMHs involving frontal, parietal, and temporal lobes and external capsules, with sparing of anterior temporal poles. Genetic analysis of NOTCH3 gene demonstrated the presence of missense c.3329G>A, p.(Cys1110Tyr) variant, confirming CADASIL diagnosis. Twin B, affected by migraine and polycythemia, as well as his monozygotic twin, presented with a 2-month history of trigeminal neuralgia. Brain MRI demonstrated diffuse WMHs with a pattern of distribution like his twin. Genetic analysis revealed the same NOTCH3 pathogenic variant. CONCLUSIONS: Our monozygotic twins have a strikingly similar neuroimaging picture with sparing of anterior temporal poles. They also have a peculiar phenotype, both presenting polycythemia without genetically confirmed cause. Twin B had trigeminal neuralgia, that is unusual in CADASIL. The possible association of the peculiar findings with the newly reported NOTCH3 variant needs to be confirmed with further observations.


Assuntos
CADASIL , Transtornos de Enxaqueca , Policitemia , Neuralgia do Trigêmeo , Masculino , Humanos , Pessoa de Meia-Idade , Gêmeos Monozigóticos/genética , CADASIL/diagnóstico por imagem , CADASIL/genética , Receptor Notch3/genética
4.
BMC Neurol ; 24(1): 77, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408980

RESUMO

BACKGROUND: CADASIL(Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)is an inherited small vessel disease caused by mutations in NOTCH3 gene. Although NOTCH3 has numerous hotspots of gene mutations, mutations in exons 9 are rare. The p.C484T gene mutation type associated with it has not been reported in any relevant cases yet. Furthermore, CADASIL patients rarely present with acute bilateral multiple subcortical infarcts. CASE PRESENTATION: We report the case of a Chinese female patient with CADASIL who experienced "an acute bilateral subcortical infarction" because of"hemodynamic changes and hypercoagulability". In genetic testing, we discovered a new Cys484Tyr mutation in exon 9, which has also been found in the patient's two daughters. CONCLUSIONS: It is important to note that this discovery not only expands the mutation spectrum of Notch3 mutations in CADASIL patients, but also examines the mechanism behind acute bilateral subcortical infarction in CADASIL patients via case reviews and literature reviews, in order to provide some clinical recommendations for early intervention, diagnosis, and treatment in similar cases in the future.


Assuntos
CADASIL , Humanos , Feminino , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Imageamento por Ressonância Magnética , Mutação/genética , Receptor Notch3/genética , Testes Genéticos , Éxons
5.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38301911

RESUMO

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptor Notch1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores Notch/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3 , Transdução de Sinais
6.
J Clin Invest ; 134(8)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386425

RESUMO

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Assuntos
CADASIL , Camundongos , Animais , Receptor Notch3/genética , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Agregados Proteicos , Receptores Notch/genética , Receptores Notch/metabolismo , Artérias/patologia , Camundongos Transgênicos , Mutação
7.
J Am Heart Assoc ; 13(4): e032668, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348813

RESUMO

BACKGROUND: It is uncertain whether rare NOTCH3 variants are associated with stroke and dementia in the general population and whether they lead to alterations in cognitive function. This study aims to determine the associations of rare NOTCH3 variants with prevalent and incident stroke and dementia, as well as cognitive function changes. METHODS AND RESULTS: In the prospective community-based Shunyi Study, a total of 1007 participants were included in the baseline analysis. For the follow-up analysis, 1007 participants were included in the stroke analysis, and 870 participants in the dementia analysis. All participants underwent baseline brain magnetic resonance imaging, carotid ultrasound, and whole exome sequencing. Rare NOTCH3 variants were defined as variants with minor allele frequency <1%. A total of 137 rare NOTCH3 carriers were enrolled in the baseline study. At baseline, rare NOTCH3 variant carriers had higher rates of stroke (8.8% versus 5.6%) and dementia (2.9% versus 0.8%) compared with noncarriers. After adjustment for associated risk factors, the epidermal growth factor-like repeats (EGFr)-involving rare NOTCH3 variants were associated with a higher risk of prevalent stroke (odds ratio [OR], 2.697 [95% CI, 1.266-5.745]; P=0.040) and dementia (OR, 8.498 [95% CI, 1.727-41.812]; P=0.032). After 5 years of follow-up, we did not find that the rare NOTCH3 variants increased the risk of incident stroke and dementia. There was no statistical difference in the change in longitudinal cognitive scale scores. CONCLUSIONS: Rare NOTCH3 EGFr-involving variants are genetic risk factors for stroke and dementia in the general Chinese population.


Assuntos
Demência , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Demência/epidemiologia , Demência/genética , Receptores ErbB , Receptor Notch3/genética
8.
Biomolecules ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254727

RESUMO

Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Adulto , Humanos , Animais , CADASIL/genética , Caenorhabditis elegans , Transdução de Sinais/genética , Mutação , Drosophila , Mamíferos , Receptor Notch3/genética
9.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015629

RESUMO

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Assuntos
Encéfalo , Demência Vascular , Receptor Notch3 , Animais , Humanos , Camundongos , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patologia , Demência Vascular/metabolismo , Camundongos Knockout , Mutação , Receptor Notch3/genética
10.
Int J Stroke ; 19(1): 105-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37485895

RESUMO

BACKGROUND AND AIM: Previous studies have suggested cardiovascular risk factors increase the risk of not only common sporadic stroke but also of stroke in patients with monogenic stroke disorders including CADASIL. We investigated the effects of the NOTCH3 Arg544Cys (R544C) variant and associated vascular risk factors on stroke in the Taiwanese population. METHODS: This study was conducted using data from the Taiwan Biobank, consisting of at least 130,000 Han Chinese participants. The genotype was derived from customized genome-wide arrays for 650,000 to 750,000 single-nucleotide polymorphisms (SNPs). Individuals with NOTCH3 R544C were subsequently matched with noncarriers based on the propensity score at a 1:10 ratio by demographic and cardiovascular risk factors. The odds ratio (OR) for stroke or other phenotypes in NOTCH3 R544C carriers and matched noncarriers was then calculated. Univariate and multivariate regression analyses were performed on cardiovascular risk factors in NOTCH3 R544C carriers with and without stroke. The polygenic risk score (PRS) model, adopted from the UK Biobank, was then applied to evaluate the role of NOTCH3 R544C in stroke. RESULTS: From the 114,282 participants with both genotype and questionnaire results, 1080 (0.95%) harbored the pathogenic NOTCH3 R544C variant. When compared to the matched controls (n = 10,800), the carriers presented with a history of stroke (OR: 2.52, 95% confidence interval (CI) (1.45, 4.37)), dementia (OR: 30.1, 95% CI (3.13, 289.43)), and sibling history of stroke (OR: 2.48, 95% CI (1.85, 3.34)) phenotypes. The risk of stroke increased with every 10-year increase in age (p = 0.006, Cochran-Mantel-Haenszel test). Among NOTCH3 R544C carriers, 16 (1.3%) of the 1080 carriers with a stroke history were older, male, and more likely to have hypertension, diabetes, dyslipidemia, and a family history of stroke. In the stepwise multivariate analysis, hypertension (OR: 11.28, 95% CI (3.54, 43.3)) and diabetes mellitus (OR: 4.10, 95% CI (1.31, 12.4)) were independently associated with stroke. Harboring the NOTCH3 R544C variant in the Taiwan Biobank is comparable with a 6.74 standard deviations increase in individual's polygenic risk score for stroke. CONCLUSION: While the NOTCH3 R544C variant alone increased the risk of stroke, modifiable vascular risk factors also played a role in the occurrence of stroke in Taiwanese community-dwelling individuals carrying the NOTCH3 variant.


Assuntos
CADASIL , Hipertensão , Acidente Vascular Cerebral , Humanos , Masculino , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Taiwan/epidemiologia , Receptores Notch/genética , Bancos de Espécimes Biológicos , Mutação , Fatores de Risco , Hipertensão/complicações , Imageamento por Ressonância Magnética , Receptor Notch3/genética
11.
Cancer Sci ; 115(2): 412-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115797

RESUMO

Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Animais , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo , Receptor Notch3/genética
12.
Sci Rep ; 13(1): 22443, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105268

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by mutations of the NOTCH3 gene, has a large heterogeneous progression, presenting with declines of various clinical scores and occurrences of various clinical event. To help assess disease progression, this work focused on predicting the composite endpoint of stroke-free survival time by comparing the performance of Cox proportional hazards regression to that of machine learning models using one of four feature selection approaches applied to demographic, clinical and magnetic resonance imaging observational data collected from a study cohort of 482 patients. The quality of the modeling process and the predictive performance were evaluated in a nested cross-validation procedure using the time-dependent Brier Score and AUC at 5 years from baseline, the former measuring the overall performance including calibration and the latter highlighting the discrimination ability, with both metrics taking into account the presence of right-censoring. The best model for each metric was the componentwise gradient boosting model with a mean Brier score of 0.165 and the random survival forest model with a mean AUC of 0.773, both combined with the LASSO feature selection method.


Assuntos
CADASIL , Acidente Vascular Cerebral , Humanos , CADASIL/genética , CADASIL/patologia , Receptor Notch3/genética , Mutação , Infarto Cerebral , Imageamento por Ressonância Magnética , Receptores Notch/genética
13.
BMC Cancer ; 23(1): 1257, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124049

RESUMO

PURPOSE: To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS: TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION: The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Imunoprecipitação da Cromatina , Receptor Notch3/genética , Proteínas Supressoras de Tumor/genética
14.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37905445

RESUMO

Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.


Assuntos
Placenta , Trofoblastos , Humanos , Gravidez , Feminino , Placenta/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
15.
Oncogene ; 42(48): 3564-3574, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853162

RESUMO

Metastasis remains the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), in which sustained activation of the Notch signaling plays a critical role. N6-Methyladenosine (m6A)-mediated post-transcriptional regulation is involved in fine-tuning the Notch signaling output; however, the post-transcriptional mechanisms underlying NPC metastasis remain poorly understood. In the present study, we report that insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) serves as a key m6A reader in NPC. IGF2BP3 expression was significantly upregulated in metastatic NPC and correlated with poor prognosis in patients with NPC. IGF2BP3 overexpression promoted, while IGF2BP3 downregulation inhibited tumor metastasis and the stemness phenotype of NPC cells in vitro and in vivo. Mechanistically, IGF2BP3 maintains NOTCH3 mRNA stability via suppression of CCR4-NOT complex-mediated deadenylation in an m6A-dependent manner, which sustains Notch3 signaling activation and increases the transcription of stemness-associated downstream genes, eventually promoting tumor metastasis. Our findings highlight the pro-metastatic function of the IGF2BP3/Notch3 axis and revealed the precise role of IGF2BP3 in post-transcriptional regulation of NOTCH3, suggesting IGF2BP3 as a novel prognostic biomarker and potential therapeutic target in NPC metastasis.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma/genética , Linhagem Celular Tumoral , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Receptor Notch3/genética , Transdução de Sinais/genética
16.
Arterioscler Thromb Vasc Biol ; 43(12): 2301-2311, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855127

RESUMO

BACKGROUND: The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS: Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS: Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS: Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.


Assuntos
Aorta Abdominal , Tecido Elástico , Animais , Camundongos , Aorta Abdominal/metabolismo , Macaca fascicularis/metabolismo , Tecido Elástico/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Elastina/metabolismo , Colágeno/metabolismo , Frutose
17.
Neurology ; 101(20): e1979-e1991, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37775315

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies reported that carriers of rare NOTCH3 variants comprised more than 10% of the general population and are susceptible to a heavy overall burden of cerebral small vessel disease while the injury patterns remain uncovered. This study aimed to investigate the imaging features in relation to rare NOTCH3 variants and the interaction between cortical atrophy and white matter lesions from a longitudinal view, with respect to spatial and dynamic patterns. METHODS: As part of a community-based cohort, we included participants with complete whole-exome sequencing and brain MRI in the baseline analysis. All participants were invited for a 5-year follow-up MRI, and those who did not complete the follow-up were excluded from the longitudinal analysis. NOTCH3 variants with minor allele frequency <1% in all 4 public population databases were defined as rare variants. We used general linear models to compare the volume of white matter hyperintensity (WMH) volume and brain parenchymal fraction between rare NOTCH3 variant carriers and noncarriers. In addition, we compared the WMH probability map and vertex-wise cortex maps at a voxel/vertex-wise level. RESULTS: A total of 1,054 participants were included in baseline analysis (13.56% carried rare NOTCH3 variants), among whom 661 had a follow-up brain MRI (13.76% carried rare NOTCH3 variants). Rare NOTCH3 variant carriers had a heavier white matter hyperintensity burden (1.65 vs 0.85 mL, p = 0.025) and had more extensive WMH distributed in the periventricular areas. We also found that rare NOTCH3 variant carriers were susceptible to worse cortical atrophy (ß = -0.004, SE = 0.002, p = 0.057, adjusted for age and sex). Cortical atrophy of multiple regions in the frontal and parietal lobes was related to white matter hyperintensity progression. DISCUSSION: Individuals with rare NOTCH3 variants have a distinct pattern of brain parenchymal damage related to CSVD. Our findings uncover the important genetic predisposition in age-related cerebral small vessel disease in the general population.


Assuntos
Lesões Encefálicas , Doenças de Pequenos Vasos Cerebrais , Substância Branca , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Lesões Encefálicas/patologia , Atrofia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Receptor Notch3/genética
18.
J Neurol Sci ; 452: 120763, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598468

RESUMO

BACKGROUND: NOTCH3 is the causative gene for autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL) which is associated with both stroke and dementia. When CADASIL presents primarily as dementia it can be difficult to distinguish from Alzheimer's disease (AD) at both the clinical and neuropathological levels. METHODS: We performed exome sequencing of several affected individuals from a large family affected with AD. PCR amplification and direct Sanger sequencing were used to verify variants detected by exome analysis and to screen family members at-risk to carry those variants. Neuropathologic brain evaluation by immunohistochemistry and MRI were performed for the carriers of the NOTCH3 variant. RESULTS: In a three-generation family with AD, we found a c.601 T > C p.Cys201Arg variant in the NOTCH3 gene that caused clinical and neuropathological manifestations of CADASIL. These features included earlier onset of dementia accompanied by behavioral abnormalities in the father and son and white matter abnormalities in the asymptomatic grandson. The family is one branch of a large pedigree studied by the Alzheimer's Disease Sequencing Project (ADSP). As part of the ADSP linkage analysis and whole genome sequencing endeavor, an ABCA1 variant, p.Ala937Val, was previously found associated with AD in this pedigree. CONCLUSIONS: Our findings, together with other reported pathogenic missense variants of the C201 codon in NOTCH3, support the role of cysteine 201 as a mutation hotspot for CADASIL and highlight the genetic complexity both clinically and pathologically of AD and related dementia.


Assuntos
Doença de Alzheimer , CADASIL , Demência Vascular , Leucoencefalopatias , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Infarto Cerebral , Receptor Notch3/genética
19.
Stroke ; 54(10): e452-e464, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602377

RESUMO

Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.


Assuntos
CADASIL , Demência Vascular , Humanos , CADASIL/diagnóstico , CADASIL/genética , CADASIL/terapia , Receptor Notch3/genética , American Heart Association , Demência Vascular/genética , Demência Vascular/terapia , Infarto Cerebral , Mutação/genética , Receptores Notch/genética , Imageamento por Ressonância Magnética
20.
Sheng Li Xue Bao ; 75(4): 503-511, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37583037

RESUMO

In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.


Assuntos
Hipertensão Pulmonar , Panax notoginseng , Hipertensão Arterial Pulmonar , Saponinas , Animais , Masculino , Ratos , Caspase 3/metabolismo , Colágeno , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/efeitos adversos , Panax notoginseng/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Receptor Notch3/genética , RNA Mensageiro , Solução Salina , Transdução de Sinais , Saponinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...